Friday, May 29, 2009

25 - Antioncogenes ( Tumor suppressor genes )

A tumor suppressor gene, or antioncogene is a gene that protects a cell from one step on the path to cancer. When this gene is mutated to cause a loss or reduction in its function, the cell can progress to cancer, usually in combination with other genetic changes.

TWO-HIT HYPOTHESIS :

Unlike oncogenes, tumor suppressor genes generally follow the 'two-hit hypothesis', which implies that both alleles that code for a particular gene must be affected before an effect is manifested. This is due to the fact that if only one allele for the gene is damaged, the second can still produce the correct protein. In other words, mutant tumor suppressors alleles are usually recessive whereas mutant oncogene alleles are typically dominant. The two hit hypothesis was first proposed by A.G. Knudson for cases of retinoblastoma. Knudson observed that the age of onset of retinoblastoma followed 2nd-order kinetics, implying that two independent genetic events were necessary. He recognized that this was consistent with a recessive mutation involving a single gene, but requiring biallelic mutation. Oncogene mutations, in contrast, generally involve a single allele because they are gain of function mutations. There are notable exceptions to the 'two hit' rule for tumors suppressors, such as certain mutations in the p53 gene product. p53 mutations can function as a 'dominant negative', meaning that a mutated p53 protein can prevent the function of normal protein from the un-mutated allele. Other tumor suppressor genes which are exceptions to the 'two-hit' rule are those which exhibit haploinsufficiency. An example of this is the p27Kip1 cell cycle inhibitor, in which mutation of a single allele causes increased carcinogen susceptibility.

FUNCTIONS :

Tumor suppressor genes, or more precisely, the proteins for which they code, either have a dampening or repressive effect on the regulation of the cell cycle or promote apoptosis, and sometimes do both.

The functions of tumor suppressor proteins fall into several categories including the following:

Repression of genes that are essential for the continuing of the cell cycle. If these genes are not expressed, the cell cycle will not continue, effectively inhibiting cell division.
Coupling the cell cycle to DNA damage. As long as there is damaged DNA in the cell, it should not divide. If the damage can be repaired, the cell cycle can continue.
If the damage cannot be repaired, the cell should initiate apoptosis (programmed cell death) to remove the threat it poses for the greater good of the organism.
Some proteins involved in cell adhesion prevent tumor cells from dispersing, block loss of contact inhibition, and inhibit metastasis. These proteins are known as metastasis suppressors.

EXAMPLES :

The first tumor suppressor protein discovered was the Retinoblastoma protein (pRb) in human retinoblastoma; however, recent evidence has also implicated pRb as a tumor survival factor.

Another important tumor suppressor is the p53 tumor suppressor protein encoded by the TP53 gene. Homozygous loss of p53 is found in 70% of colon cancers, 30–50% of breast cancers and 50% of lung cancers. Mutated p53 is also involved in the pathophysiology of leukemias, lymphomas, sarcomas, and neurogenic tumors. Abnormalities of the p53 gene can be inherited in Li-Fraumeni syndrome (LFS), which increases the risk of developing various types of cancers.

PTEN acts by opposing the action of PI3K, which is essential for anti-apoptotic, pro-tumorogenic Akt activation.

Other examples of tumor suppressors include APC and CD95.
Google
 

Subscribe Now: Feed

You are visitor number

Visitors currently online